ブログ

結晶群の一般化

(4)

群を積に分解しその生成群を調べたり,逆に2つの群の積で大きな群を生成したりするときに,群の直積$${H\times A}$$や半直積$${H\rtimes A}$$が役に立つ(ここに,群$${H}$$は群$${G}$$の正規部分群, 群$${A}$$は部分群:直積は部分群$${A}$$も正規部分群である特殊な場合に成立する).
直積$${H\times A}$$は,$${h_{i}\in H, a_{j}\in A}$$とし,ペア $${\{h_{i}a_{j}\} }$$を元として構成される群だが,任意の元$${h_{i}a_{j},  h_{k}a_{l } }$$がいつも可換とは限らないので,一般には,積則は半直積になる.
2つの群(例えば,結晶構造とそれを舞台に発現する特性の対称性)の関係を研究するときにもこの方法は応用される.
●ピエール・キュリーの原理(1894)
対称性$${G_{p_{i } } }$$の現象

0