mail to: sgktani@gmail.com
mail to: sgktani@gmail.com
同型定理
非正規の拡大の例に,Van derWaerden -Bruckhardtの群$${G_{WB}^{(p) } }$$がある.この群は,3項記号$${G/H'/H}$$で定義されるが,ここで,古典群$${G \leftrightarrow G_{WB}^{(p) } }$$;指数$${p}$$の部分群$${H' \subset G}$$は,性質(色)$${i}$$を保存する部分群$${H_{i}^{(p_{1})} \subset G_{WB}^{(p) } }$$に同型対応する;正規部分群$${H=G \cap G_{WB}^{(p) } }$$(古典部分群$$ H \vartriangleleft G^{(p) } $$を作っている)は,$${H'}$$のすべての共役部分群の共通部分によって決定される$${H= \cap gH'g^{-1}, g \in G}$$.
色群$$ G_{WB}^{(p)}=g_{1}H_{i}^{(p_{1})} \cup g_{2}^{(p)}H_{i}^{(p_{1})} \cup \ldots \cup g_{p}^{(p)}H_{i}^{(p_{1})} $$は,部分群$${H_{i}^{(p_{1}) } }$$を,剰余類の代表系$$ G^{(p)^{* } }=\{ g_{1},g_{2}^{(p)}, \ldots ,g_{p}^{(p)} \} $$で拡大したものと表現されるが,一般には群を成さない.$${G_{WB}^{(p) } }$$で作用する性質$${p}$$個の置換は,$${g_{i } }$$を左から乗じることによる左剰余類$${g_{k}H'}$$の置換である:
$$ g_{i}^{(p)}=g_{i}p_{i}=p_{i}g_{i} $$,$$p_{i}=\begin{pmatrix} g_{1}H' & g_{2}H' & \ldots & g_{p}H' \\ g_{i}g_{1}H' & g_{i}g_{2}H' & \ldots & g_{i}g_{p}H'\\ \end{pmatrix} $$
$${P}$$-対称のZamorzaev群は,対応する図形の一般点がそれぞれ1色に塗られる場合には,色群のすべての型を包含する.このようなすべての群$${G^{(p) } }$$をその生成群$${G}$$から,次の手段により導くことができる:
1)$${H=G^{(p)} \cap G=G^{ \ast } }$$は$${G^{(p) } }$$の古典的部分群,$${Q=G^{(p)} \cap P}$$は色置換の部分群として,$${G/H \leftrightarrow P/Q}$$となるようなそれぞれの中の正規部分群$${H}$$と$${Q}$$を探す.
2) 同型$${G/H \leftrightarrow P/Q}$$の確立と同型対応する剰余類$${gH \leftrightarrow \varepsilon Q}$$の対積を作る.
3) 得られた積を集める:$${G^{(p)}= \cup gH \cdot \varepsilon Q}$$
この説明枠外に,Wittke-Garrido色対称群と複素関数のEwald-Bienenstock対称群が存在する.これらの場合には,色変化の規則は,変換だけでなく,図形中の点の取り方にも依存する,すなわち,対応する色変換は局所的となる.
●References
色群の一般化には;Niggli, Wondratschek, Wittke, Van der Waerden, Burckhardt, Pawley, Mackay, Zamorzaev, Koptsikなどが係わっている.
Shubnikov and Koptsik; Symmetry in science and art (1974)
V.A.Koptsik; Generalized symmetry in crystal physics; Comput. Math. Applic. Vol.16, No.5-8, pp.407-424, 1988
A.M.Zamorzaev; Generalized antisymmetry; Comput. Math. Applic. Vol.16, No.5-8, pp.555-562, 1988
Alexandre Lungu; Zamorzaev's P-symmetry and its further generalizations; 2002; Moldova State University